Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Block quote
Ordered list
- Item 1
- Item 2
- Item 3
Unordered list
- Item A
- Item B
- Item C
Bold text
Emphasis
Superscript
Subscript
About This Simulation
Check out how some vertebrates are able to regrow entire limbs and explore the cellular mechanisms behind tissue regeneration in cute axolotls using microscopy and fluorescent proteins.
Learning Objectives
- Understand that the ability to regenerate tissues varies throughout vertebrates
- Describe what a blastema is and the cell types that compose this structure
- Understand the concept of positional information in regenerative biology
About This Simulation
Lab Techniques
- Microscopy
- Fluorescent proteins
- Dissection
Related Standards
- No direct alignment
- No direct alignment
- Biology 1.1 Introduction to cells
Learn More About This Simulation
Regeneration sounds like a superpower, but some reptiles and amphibians are perfectly able to regrow entire parts of their bodies. In the Regeneration Biology simulation, you get to dissect axolotls and observe the cells responsible for the restoration of missing limbs under the microscope.
Grasp the cellular mechanisms behind tissue regeneration
You will join Dr. Prometheus in his research to learn why some wounds can regenerate and others cannot, and how it translates into different treatments in a medical ward. You will experiment with axolotls in the Regeneration Biology lab to discover the critical steps required for regeneration to occur and learn about the cellular particularities of the blastema.
Tissue analysis and fluorescent constructs
In the Regeneration Biology lab, you will be able to virtually dissect axolotls and observe the regeneration process in a few minutes instead of weeks. In that way, you can experiment with different conditions, for example suturing a wound, and immediately see how it affects the tissues – all without harming any real animals. Using a microscope, you will also analyze the tissue samples from a regenerating stump to identify the involved cell types. Finally, you will use fluorescent proteins to explore the concept of positional information and its importance in regenerative biology through the creation of mutant axolotls.
Apply the data from axolotls to humans
You will apply your newly acquired knowledge of regeneration biology to understand the current treatments for open wounds and the possibilities for the future of medicine.
Will you be able to figure out why humans cannot regenerate as well as some other vertebrates?
Experience Labster for Yourself
Boost Learning with Fun
75% of students show high engagement and improved grades with Labster
Discover Simulations That Match Your Syllabus
Easily bolster your learning objectives with relevant, interactive content
Place Students in the Shoes of Real Scientists
Practice a lab procedure or visualize theory through narrative-driven scenarios
For Science Programs Providing a Learning Advantage
FAQs
Find answers to frequently asked questions.
Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Block quote
Ordered list
- Item 1
- Item 2
- Item 3
Unordered list
- Item A
- Item B
- Item C
Bold text
Emphasis
Superscript
Subscript
Labster can be integrated within a school's LMS (Learning Management System), and students can access it like any other assignment in their LMS. If your Institution does not choose an LMS integration, students will log in to Labster's Course Manager once they have an account created. Your institution will decide the access method during the sales process.
Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.
Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.
Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.