Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Block quote
Ordered list
- Item 1
- Item 2
- Item 3
Unordered list
- Item A
- Item B
- Item C
Bold text
Emphasis
Superscript
Subscript
About This Simulation
Join a cell biology research group to find out how a poisonous compound from a yew tree can be used in cancer therapy. You will be immersed in an animation of a human cell and use light and fluorescence microscopy to study cell division.
Learning Objectives
- Describe the role cell division plays in growth, tissue repair, and reproduction
- Describe the principle of cell cycle regulation and control
- Distinguish between the different stages of the cell cycle: interphase (G1, S and G2) and mitosis/meiosis
- Model how meiosis ensures genetic diversity
- Summarize the main events that occur in the sequential phases of mitosis and meiosis
- Categorize outcomes of meiosis and mitosis
About This Simulation
Lab Techniques
Related Standards
- HS-LS1-4
- HS-LS3-1
- HS-LS3-3
- HS-LS3-2
- Unit 4: Cell Communication and Cell Cycle
- 3.3 Meiosis
- 1.6 Cell division
- 10.1 Meiosis
Learn More About This Simulation
How can a toxic compound be used in medicine? Paclitaxel, isolated from yew trees, can kill large animals like horses but is also used in cancer therapy. In this simulation, you will learn how cells divide and how they are affected by poisonous paclitaxel.
Test the effect of paclitaxel
Start by testing the effect of paclitaxel on cultured cells. Will the compound kill the cells, or perhaps inhibit or accelerate cell division? Continue by learning more about the phases a cell must go through in order to divide and how this complex process is regulated.
How is DNA packaged?
Next, you have the option to dive into a blood sample to find out how DNA is packaged in an immersive animation of the cell. Find the DNA inside the nucleus and then zoom in from the chromosomes all the way to individual nucleotides. If you are already familiar with this, you can continue with the next experiment straight away!
Use microscopy to study mitosis
Prepare a sample of onion cells to observe the phases of mitosis under the microscope. Find out how each phase contributes to successful duplication of the cell.
Compare mitosis and meiosis
Now that you are an expert in mitosis, it is time to find out how this way of cell division differs from meiosis. Compare the phases and outcomes of mitosis and meiosis through an interactive learning activity and discover how meiosis contributes to genetic diversity in the population. Finally, think back to the effect of paclitaxel: does this compound affect only cells dividing through mitosis or would it affect meiosis as well?
Experience Labster for Yourself
Boost Learning with Fun
75% of students show high engagement and improved grades with Labster
Discover Simulations That Match Your Syllabus
Easily bolster your learning objectives with relevant, interactive content
Place Students in the Shoes of Real Scientists
Practice a lab procedure or visualize theory through narrative-driven scenarios
For Science Programs Providing a Learning Advantage
FAQs
Find answers to frequently asked questions.
Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Block quote
Ordered list
- Item 1
- Item 2
- Item 3
Unordered list
- Item A
- Item B
- Item C
Bold text
Emphasis
Superscript
Subscript
Labster can be integrated within a school's LMS (Learning Management System), and students can access it like any other assignment in their LMS. If your Institution does not choose an LMS integration, students will log in to Labster's Course Manager once they have an account created. Your institution will decide the access method during the sales process.
Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.
Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.
Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.