Back to simulations

Thermal Homeostasis: Apply thermoregulation to climate change | Virtual Lab

Higher Education
Biology
Thermal Homeostasis: Apply thermoregulation to climate change
Labster is used by 1,000's of amazing schools and universities
Learn more

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

About This Simulation

See how deer physiologically respond to climate change. Use a metabolic chamber and Douglas bag to measure the oxygen content, humidity and volume of a deer’s exhaled breath at different temperatures.

Learning Objectives

  • Understand the principles of heat balance and thermoregulation
  • Compare mammalian methods of heat gain and heat loss used to regulate body temperature
  • Interpret how vasoconstriction and vasodilation contribute to thermoregulation
  • Demonstrate how counter-current exchanges regulate extremity temperatures
  • Analyze the impact of thermogenic heat production and heat loss on survival capabilities of deer
  • Quantify the metabolic rate of deer at different temperatures
  • Compare the thermoneutral zones of deer in summer and winter months

About This Simulation

Level:
Higher Education
Length:
38
Min
Accessibility Mode:
Available
Languages:
English

Lab Techniques

  • Oxygen analyzer
  • Humidity Probe
  • Infrared heat detection
  • Metabolic Chamber
  • Douglas Bag
  • Spirometer
No lab techniques are listed for this simulation.

Related Standards

University:
NGSS:
  • No direct alignment
AP:
  • No direct alignment
LB:
  • 6.6 Hormones, homeostasis and reproduction
No lab techniques are listed for this simulation.

Learn More About This Simulation

Maintaining a constant body temperature is central to an animal’s survival. In this simulation, you will apply the principles of thermal homeostasis to understand how deer thermoregulate in response to climate change. You will complete field work in Northern Canada and then carry out experiments in the lab on the effect of high temperatures on deer using a metabolic chamber and Douglas bag. You will measure oxygen content, humidity and volume of breath exhaled, and calculate the metabolic rate, evaporative heat loss and fat burned to answer how climate change affects deer in the North.

Help the International Climate Change Committee

The International Climate Change Committee wants you to investigate how large animals in the North are affected by changing temperatures. You will therefore collect internal and external body temperature data of deer in Northern Canada before returning to the lab where you will learn how changes to blood vessels can help deer maintain thermal homeostasis. By calculating and comparing potential heat production to potential heat loss, you will be able to determine how deer can optimally respond to changes in temperature.

Experiment using a metabolic chamber

You will alter the temperature and air flow through a sophisticated metabolic chamber holding a deer. An oxygen analyzer measures the oxygen content of air flowing in and out of the chamber and allows you to calculate and compare the metabolic rate of deer at different temperatures. Using a face mask on the deer attached to a Douglas bag, you will be able to measure the humidity and volume of exhaled air at different temperatures. This allows you to determine which factors change in order to help the deer maintain thermal homeostasis. In this simulation, you can repeat experiments quickly at various temperatures for deer during summer and winter months, with and without wind. An emphasis on unit conversions ensures that you are able to compare your calculations for heat production with heat loss and ultimately with fat burned per day to identify how long deer can survive in Northern conditions.

Summarize thermal homeostasis

Finally, you will summarize everything you have learned about thermal homeostasis by identifying which physiological conditions are increased and decreased during hot and cold days. Will you be able to predict how deer respond to climate change in the North?

Experience Labster for Yourself

Boost Learning with Fun

75% of students show high engagement and improved grades with Labster

Discover Simulations That Match Your Syllabus

Easily bolster your learning objectives with relevant, interactive content

Place Students in the Shoes of Real Scientists

Practice a lab procedure or visualize theory through narrative-driven scenarios

a group of people standing around a laptop computer

For Science Programs Providing a Learning Advantage

Professor Margaret Brady was able to enhance student learning with A&P virtual labs.
Margaret Brady
Associate Professor
North Dakota State College of Science

“They did the simulation at home, then completed the in-person lab within 30 minutes, no questions asked, and passed the quiz with flying colors.”

Lewis Mattin
PhD
Lecturer in Human Physiology
University of Westminster

"I saw some of the students who clearly didn’t necessarily like sitting there reading a book discover they could turn on Labster and keep up with the rest of the class because it spoke to them.

Melody McGill
Curriculum Coordinator
Modesto City Schools

"Having something that's engaging for the students gives teachers that opportunity to breathe and get excited again. Because they're seeing the kids light up, they're seeing the kids engage with content."

user
Kyle Hammon
Adjunct Instructor
Wenatchee Valley College

"The question always is, ‘Can we demonstrate that the students are meeting course outcomes?’ Check! We can do that.”

Dr. Melody Esfandiari
Chemistry Lecturer
San José State University

"We surveyed over 400 students. More than 90% thought Labster was easy to navigate, and that it was fun, but more importantly, most of them felt confident that they could execute the labs in person. And that confidence is a big deal."

a man in a black sweater and white shirt
Dr. Stuart Goodall
Lecturer
Northumbria University

“The Labster simulations get students to do things, and they're not just sitting there consuming a webinar where their mind can drift. They become an active participant in that learning experience.”

UCL logo with bold black 'UCL' letters.
02_logo-of-case-western-reserve-university
Logo of the University of Texas at Arlington, featuring a bold orange 'A' with a blue outline and a white star in the middle, symbolizing Texas.
University of Alabama logo featuring a traditional emblem with the university name.
Virginia's Community Colleges logo featuring a recognizable emblem with the institution's name.
University Imperial logo featuring a classic emblem with the university name.
UTSA logo
University of North Charlotte logo featuring a stylized emblem with the university name.
University of Washington logo featuring a bold emblem with the university name.
ETH Zurich logo featuring a sleek and modern design with the university name.
SUNY logo
University of Florida logo featuring a bold emblem with the university name.
University of Stevens logo featuring a stylized emblem with the university name.
University of Kansas logo featuring a classic emblem with the university name.
Florida State University logo featuring a traditional emblem with the university name.
16_logo-of-university-of-tennessee
17_logo-of-university-of-tulane-university
University of California Community Colleges logo featuring a recognizable emblem with the institution's name.
Johns Hopkins logo
University of Skovde logo

FAQs

Find answers to frequently asked questions.

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5
Heading 6

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Block quote

Ordered list

  1. Item 1
  2. Item 2
  3. Item 3

Unordered list

  • Item A
  • Item B
  • Item C

Text link

Bold text

Emphasis

Superscript

Subscript

How do students access Labster?

Labster can be integrated within a school's LMS (Learning Management System), and students can access it like any other assignment in their LMS. If your Institution does not choose an LMS integration, students will log in to Labster's Course Manager once they have an account created. Your institution will decide the access method during the sales process.

How is Labster purchased?

Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.

How is Labster different from other learning solutions?

Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.

What types of courses does Labster support?

Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.