Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Block quote
Ordered list
- Item 1
- Item 2
- Item 3
Unordered list
- Item A
- Item B
- Item C
Bold text
Emphasis
Superscript
Subscript
About This Simulation
A meteor has crashed to Earth! Search the crash site with a Geiger counter, and bring a radioactive sample back to the lab. Learn all about types of decay, decay series, and half-life. Help Dr. One and Marie Curie figure out what’s in that rock.
Learning Objectives
- Compare different types of radioactive decay and balance the respective nuclear decay equations using nuclide notation
- Calculate the half-life of a radioisotope
- Explore the concept of a radioactive decay series
About This Simulation
Lab Techniques
Related Standards
- Early Stage Bachelors Level
- EHEA First Cycle
- EHEA Short Cycle
- US College Year 1
- US College Year 2
- HS-PS1-8
- PS1.C-H1
- Physics 2 Unit 7.2
Learn More About This Simulation
Radiation has huge importance in the modern world. Used in medicine, energy, and the military, its impact on society and the future of science can’t be overstated. After harvesting a radioactive sample from a fallen meteor, you will start with the fundamentals, learning about the atom, stability, and the origins of radioactive decay. You will explore the futuristic lab guided by a pioneer of the field of radioactivity: Marie Curie. You will move on to more complex ideas, such as decay series and half-life. Then apply what you’ve learned and produce a graph to determine the half-life and the identity of your radioactive rock sample.
Introduction
The simulation opens with a bang as a meteor crashes to Earth. After heading back to the Lab and being introduced to one of the most celebrated radiation scientists - Marie Curie - you build your own nuclei using the Lab’s interactive and futuristic Holo-table.
Visualise radiation
In our virtual environment, you are able to take a deep dive into the atomic world, and safely see how radioactive decay works. Three animations and minigames enable you to understand the concepts of alpha, beta, and gamma decay in an interactive and fun way. As you’re eager to identify your rock sample, you learn the fiddly topic of decay notation and balancing equations in an engaging way.
Decay series
Your first test is to track the decay path of a neptunium isotope as it ejects radiation. By playing another minigame, you discover what happens to radioactive nuclides as they decay, and thereby expand on the idea of decay types. After succeeding in this notoriously tricky task, you move on to a second test, getting to grips with half-life, the last step before being able to identify your sample.
Half-life
Fear not, Dr. One is here to help you visualize the concept of half-life! By representing radioactive atoms as coins on a desk, this complex and abstract concept becomes much simpler and tangible, and easier to understand. After plotting the results of the coin-flip experiment on a graph you are presented with one final task. You must deduce the half-life of your sample, and thereby its identity, before you can proudly report your findings back to Madame Curie!
Experience Labster for Yourself
Boost Learning with Fun
75% of students show high engagement and improved grades with Labster
Discover Simulations That Match Your Syllabus
Easily bolster your learning objectives with relevant, interactive content
Place Students in the Shoes of Real Scientists
Practice a lab procedure or visualize theory through narrative-driven scenarios
For Science Programs Providing a Learning Advantage
FAQs
Find answers to frequently asked questions.
Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading 6
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Block quote
Ordered list
- Item 1
- Item 2
- Item 3
Unordered list
- Item A
- Item B
- Item C
Bold text
Emphasis
Superscript
Subscript
Labster can be integrated within a school's LMS (Learning Management System), and students can access it like any other assignment in their LMS. If your Institution does not choose an LMS integration, students will log in to Labster's Course Manager once they have an account created. Your institution will decide the access method during the sales process.
Labster is only available for purchase by faculty and administration at academic institutions. To procure Labster, simply reach out to us on our website. Schedule a demo, book a meeting to discuss pricing, start a free trial, or simply fill out our contact form.
Labster simulations are created by real scientists and designed with unparalleled interactivity. Unlike point and click competitors, Labster simulations immerse students and encourage mastery through active learning.
Labster supports a wide range of courses at the high school and university level across fields in biology, chemistry and physics. Some simulations mimic lab procedures with high fidelity to train foundational skills, while others are meant to bring theory to life through interactive scenarios.