Aromatic compounds belong to organic chemistry and are also called arenes. Aromatic compounds are those hydrocarbons that contain a benzene ring or other structures related to the ring. In other terms, aromatic compounds have conjugated planar ring systems with delocalized pi-electrons. The main examples of aromatic compounds are benzene and toluene.
Aromatic compounds can be divided into two types; benzenoids and non-benzenoids. Benzenoids are those aromatic compounds that contain a benzene ring in them. Examples of benzenoids are aniline, acetophenone, and phenol. Non-benzenoids are those compounds that contain rings other than benzene rings. For example, furan is an example of a non-benzenoids.
In aromatic compounds, benzene acts as a parent molecule which consists of six hydrogen atoms. These hydrogen bonds give an unsaturation nature to benzene compounds. The carbon atoms are alternatively attached with a single bond and a double bond. There is no true bond present between the atoms of the benzene compound. The compound has hybrid single and double bonds in it. The pi electrons of the benzene compound have the ability to move freely around the ring. These are also delocalized electrons that can move without making a confined bond between two atoms. The benzene ring is the least reactive and more stable compound than the straight-chain compounds. There are several benzene derivatives such as xylene, toluene, and styrene.
Several aspects of aromatic compound nomenclature can be difficult for students to learn. At Labster, we compiled all the complexities students experience while learning about aromatic compound nomenclature. Then, we provide five different methods to make this topic more accessible for students to understand. In the end, we will convince you why a virtual lab simulation effectively explains the aromatic compound nomenclature to the students.
Aromatic compound nomenclature is a complex topic, so some reasons make this topic difficult to learn.
In aromatic compound nomenclature, students need to learn about several abstract concepts. The molecules of aromatic compounds are so small that you cannot see them with the naked eye. The structures of benzene and derivatives of benzene are also abstract concepts. It is hard for students to remember the nomenclature of aromatic compounds without seeing the original structures.
The nomenclature of aromatic compounds is classified into three categories; monosubstituted, disubstituted, and trisubstituted. In disubstituted, there are several prefixes according to the position of the second substituent. These are ortho, meta, and para. The formation of structures of derivatives of benzene is also difficult for students to remember. Students do not like learning about aromatic compound nomenclature because it is a complicated and time-consuming topic.
You cannot memorize the aromatic compound nomenclature because of the heavy content. You need to remember Huckle’s rule and also know how to apply Huckle’s rule in the aromatic compound nomenclature. It is mainly used for the estimation of planar ring shape molecules of aromatic compounds. Therefore, it is tough for many students to understand and remember the aromatic compound nomenclature.
Since you are familiar with the reasons that make aromatic compound nomenclature difficult to learn. There are five ways that can make this topic more interesting and easier for students to understand.
August Kekule was a German organic chemist who was the founder of the theory of chemical structure and the structure of benzene. His work on the structure of benzene gained popularity. In 1865, He published a paper in French related to the benzene ring. In this paper, he explained the ring structure of benzene with the alternative single and double bonds. He also published a paper related to the structure of benzene in German. Before that, there was very little study available about aromatic compounds. Much evidence related to aromatic isomers was available in 1865. He introduced the structure of benzene by using the number of isomers for the derivatives of the benzene. He explained the structures of derivatives of benzene by one, two, and three C-C bonds.
It is important for students to know about the properties of aromatic compounds before learning the nomenclature. The aromatic compounds are called aromatic because of the perfumed smell of these compounds. These compounds are made of carbon hydrogen bonds that are fundamental elements on the earth. The properties of aromatic compounds are the following:
Figure: An image of the structure of benzene from Labster virtual laboratory of aromatic compound nomenclature.
When students know the applications of aromatic compounds used in their daily lives, it enhances their interest in learning aromatic compound nomenclature. These compounds play a beneficial role in the synthetic and biological processes.
When students learn about the aromatic compound nomenclature through color diagrams, it can be more effective for them to understand the topic. The diverse colors of the diagram can help the students to understand the structures present in the aromatic compounds. Visual representation also helps them develop visual thinking that can effectively understand the aromatic compound nomenclature. Using color diagrams is a great method to learn complex information because it can be the same in your memory.
The image presented below shows the Huckle value of Benzene, Cyclooctatetraene, and Naphthalene. It also explains the difference between the structures of Benzene, Cyclooctatetraene, and Naphthalene. It helps students appropriately understand the Huckle value and structures of organic compounds.
Figure: An image shows the Huckle value and structures of Benzene, Cyclooctatetraene, and Naphthalene from Labster virtual laboratory of aromatic compound nomenclature.
The virtual lab simulation is a great method for understanding the aromatic compound nomenclature. At Labster, we provide an advanced 3D simulation with gamification elements such as storytelling and a scoring system. It helps the teacher to convey difficult topics like aromatic compound nomenclature to their students.
Labster aromatic compound nomenclature explains the differentiation between aromatic compounds and non-aromatic compounds, IUPAC and nonsystematic nomenclature of benzene, and the classification of aromatic compounds and non-aromatic compounds by using Huckle’s rule. So, it is an effective way to learn about all the important concepts of aromatic compound nomenclature.
Check out the Labster aromatic compound nomenclature simulation here, or get in touch to find out how you can start using virtual lab simulation with your students.
Labster helps universities and high schools enhance student success in STEM.
Get StartedRequest a demo to discover how Labster helps high schools and universities enhance student success.
Get Started