Hydrocarbons are a subgroup of organic compounds composed entirely of only carbon and hydrogen atoms. They can be simple or complex. They are generally classified into four subcategories namely
An example of a hydrocarbon is shown in Figure 1. Salicylic acid, also shown in Figure 1, is an organic compound but is not a hydrocarbon because it contains an oxygen group.
Figure 1: Left: is a molecular structure that is a hydrocarbon, such as methane, propane, and 1-butene. Right: is the structure of salicylic acid, which is not a hydrocarbon.
Read on for some thoughts on why this can be a difficult topic for teachers and students, five suggestions for changing it, and thoughts on why virtual labs can make things easier.
There are three reasons in particular why hydrocarbon nomenclature can be difficult, even for the most diligent of students.
Hydrocarbons can contain single, double, or triple bonds, which determines the nomenclature of the compound.
Note: Alkanes are the least reactive hydrocarbons due to their stability. They contain only strong single sigma bonds. Single bonds require a lot of energy to break and are therefore the least reactive.
Figure 2: Role of the prefixes in names of hydrocarbons.
A hydrocarbon is saturated if it contains no double or triple bonds. When any of these are present in the compound, it becomes unsaturated. The molecular formulas of non-cyclic alkanes follow this rule for the amount of carbon and hydrogen: CnH2n+2. Noncyclic alkenes follow this rule: CnH2n. Noncyclic alkynes follow this rule: CnH2n-2.
The functional group is the part of the molecule that is responsible for its reactivity. Different functional groups cause different types of reactions in organic chemistry. The functional group can be a specific arrangement of carbon and hydrogen, e.g. double bonds, or may also contain other elements. Oxygen and nitrogen are the most common elements in organic compounds, apart from carbon and hydrogen. Other examples of elements are phosphorus and halogens.
Simple hydrocarbons are named using a few simple rules. The first part of the name - the prefix - is determined by the number of carbon atoms in the longest carbon chain. A prefix is added to the last syllable to indicate the number of carbon atoms in the hydrocarbon chain. The table below shows the prefixes for hydrocarbons with 1-10 carbon atoms in the longest carbon chain. Note that the second column shows only the prefix and the full name includes the suffix, which for a hydrocarbon depends on whether there are double or triple bonds in the compound.
The second part of the name - the suffix - is determined by whether double or triple bonds are present. A visual representation of these principles can be seen below
Figure 5: Overview of the nomenclature principles of simple hydrocarbons.
Only the carbon and hydrogen side groups in organic compounds have the same prefix as the hydrocarbon and the suffix '-yl' is used.
With these points in mind, here are five things you can consider introducing into your chemistry class lessons to make them more engaging, approachable, and enjoyable to teach for you and to learn for your students.
Antoine-Laurent Lavoisier was born into a privileged family on August 26, 1743, in the French capital, Paris.
His father was Jean-Antoine Lavoisier, a lawyer in the Paris Parliament. His mother was Emily Puntis, whose family fortune came from a butcher shop. She died when Antoine was five years old, leaving him a large sum of money.
Lavoisier studied law to please his family but was especially interested in science. He proposed the law of mass conservation. Lavoisier spent a lot of time isolating elements and breaking down chemical compounds. He discovered a system of naming chemical compounds consisting of several elements. Most of the systems are still in use today. He also named the element hydrogen.
Hydrocarbons are very useful in our everyday lives. For instance, we need some energy to carry out our daily activities. This energy could be in the form of fuels for powering mechanical and electrical activities that enable us to drive to and from work, power machinery, etc
Hydrocarbons are mostly used for fuel. Gasoline, diesel fuel, natural gas, fuel oil, jet fuel, coal, kerosene, and propane are some commonly used hydrocarbon fuels. Hydrocarbons are also used to make things, including plastics, glue, and synthetic fabrics like polyester.
When side groups are present on the longest chain of carbon atoms, they are numbered according to the carbon to which they are attached. The carbon number for this group of organic compounds is thus assigned:
Note:
Structural isomers are compounds that have the same molecular formula but different atomic arrangements. There are several subgroups of structural isomerism. In chain isomers, the carbon skeleton of the compound is rearranged but still contains the same number of carbon and hydrogen atoms.
Figure 6: Examples of pairs of chain isomers. The first two compounds both have the formula C4H10, and the last two compounds both have the formula C6H14.
Another type of structural isomer is the positional isomer, which is based on the position of the functional group in the molecule. This position changes the name of the molecule slightly to indicate where the functional group is located and can have a major impact on reactions involving the molecule. 1-Butene and 2-butene are position isomers because the double bonds are positioned differently in identical compounds.
Branched-chain hydrocarbons are sometimes named for the prefix they would receive if all the carbons were in one chain. for example, methylpropane, which has four carbon atoms, is also often called isobutane, where iso means the structural isomer of butane, which can only be methylpropane.
A skeletal formula is a simple representation of an organic compound. Instead of listing all the carbon and hydrogen atoms, they are indicated by angles, also called "vertices," on the structure. For example, see Figure 7. Only carbon and hydrogen can be removed in this way.
Figure 7: The organic molecule benzene with all atoms drawn out (Structure A), and the simplified skeletal structure (Structure B), which is commonly used. The skeletal structure of salicylic acid with molecular formula C7H6O3(Structure C)
Skeletal structures are a great way to show important aspects such as the functional groups of an organic compound.
A unique way to teach about hydrocarbon nomenclature and representation is through a virtual laboratory simulation. At Labster, we’re dedicated to delivering fully interactive advanced laboratory simulations that utilize gamification elements like storytelling and scoring systems, inside an immersive and engaging 3D universe.
Check out the Labster hydrocarbon nomenclature and representation simulation that allows students to learn about hydrocarbon nomenclature through active, inquiry-based learning. In the simulation, students will learn how to name hydrocarbons - the core part of organic compounds. You will also be challenged with various ways of representing chemical structures in 2D, and learn to decide when to use which one.
Learn more about the hydrocarbon nomenclature and representation simulation here or get in touch to find out how you can start using virtual labs with your students.
Labster helps universities and high schools enhance student success in STEM.
Get StartedRequest a demo to discover how Labster helps high schools and universities enhance student success.
Get Started